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PREFACE

This technical memorandum preserves an essentially complete manuscript

which was found among the papers of Dr. Rudolph Preisendorfer after his

untimely death. Only minimal editing of the manuscript has been done by Dr.

Curtis Hob1ey of the Joint Institute for the Study of the Atmosphere and

Ocean, University of Washington, Seattle, Washington. Dr. Hob1ey was

supported in this work by the Oceanic Biology Program of the Office of Naval

Research under contract number N00014-87-K-0525.
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EIGENKATRIX REPRESENTATIONS OF RADIANCE DISTRIBUTIONS
IN LAYERED NATURAL WATERS WITH WIND-ROUGHENED SURFACES

Rudolph W. Preisendorfer

ABSTRACT. This report develops analytic, closed-form solutions
for radiance distributions in natural waters such as lakes and
seas. The solutions are valid in layered water bodies for which
each layer has inherent optical properties (absorption and
scattering functions) which are independent of depth within that
layer. The water body is assumed free of internal light
sources. The effects of a wind-blown air-sea surface are
included. This work extends to the radiance level certain results
which were previously known to hold for irradiances. The
eigenmatrix formalism developed here is convenient for numerical
computation of radiance distributions, given the inherent optical
properties of the water and the desired boundary conditions at the
water surface and bottom (the direct problem). Moreover, the
formalism suggests an algorithm for solving the inverse problem:
the determination of the inherent optical properties from
measurements of the radiance distribution within a water body.

1. INTRODUCTION

We develop here a method for solving the equation of transfer for

radiance in a piecewise homogeneous, source-free, plane parallel water body

with a wind-roughened air-water surface. The assumption of homogeneity within

each layer of the medium allows a closed-form type of solution which views the

radiance distribution at each depth within a layer as a linear combination of

purely exponential elementary components which decrease or increase with

depth. This mode of decomposition of the multi-directional light field has

the same simple visualizability as the classic two-flow irradiance model of

the light field from which the theory of radiative transfer in stratified

media began (cf. Schuster, 1905). Moreover the new representation allows

explicit analytic and algebraic formulas to be developed for such basic

properties of the medium as the radiance reflectance and radiance

transmittance of the component layers, the radiance distribution within each

layer, and also the asymptotic radiance distribution evolving in an infinitely
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deep homogeneous lower layer of a medium. Numerical solutions are readily

forthcoming from such algebraic and analytic representations, and the boundary

conditions for a wind-ruffled air-water surface endow the model with an

ability to handle realistic reflectance and transmittance activity at the

surface.

The present study builds on an earlier work, Mobley and Preisendorfer

(1988), which describes in detail the so-called Natural Hydrosol Model (NHM)

for the computation of radiance distributions in natural waters with wind­

blown surfaces. (The NHM does not require the assumption of piecewise

homogeneity of the water body.) In the interests of brevity, we shall draw

freely from the results of this previous work; familiarity with Mobley and

Preisendorfer (1988) is therefore a prerequisite for the full understanding of

the present work. The essential feature of the NHM is the quad-averaging of

the radiance distribution over quadrilateral subsets of the unit sphere of

directions, and the exact splitting of the azimuthal structure of the quad­

averaged radiance distribution into spectral modes by harmonic analysis. This

double decomposition of the radiance distribution has the effect of reducing

the integrodifferential equation of transfer for radiance to a set of coupled

ordinary differential equations, one to each azimuthal spectral mode. From

this point on, the techniques of the linear interaction principle (cf.

Preisendorfer, 1976, vol. IV) can be applied to the family of differential

equations associated to each spectral mode.

In homogeneous media, the system matrices of each spectral family of

differential equations have depth-independent entries; this allows an

extremely useful algebraic decomposition of the system matrix into its

eigenvalues and eigenvectors in each homogeneous layer of the medium. The

eigenvalues of the system matrix turn out to be the desired exponential modes

2
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of decay, and the eigenvectors become the framework for the directional

structure of the radiance distributions.

For those who wish to see the ground from which the present eigenmatrix

procedure has sprung, we include in Appendix A the differential equations of

the two-flow model of the irradiance field, the modern descendants of

Schuster's (1905) equations. It is indicated how the classic two-flow model

establishes an algebraic pattern that generalizes from the simple upward and

downward decomposition of photon flows to the multitude of photon flows in the

present context. For those who are coming upon the notions of the linear

interaction principle and its associated invariant imbedding procedures for

the first time, the exposition in Appendix A should perhaps be studied before

going on to section 2, below.

Sections 2 through 5 merely restate various results which are rigorously

developed in Mobley and Preisendorfer (1988). The goal of this review is the

local interaction principles as expressed in equation (5.16), along with the

associated boundary conditions (5.18), (5.19) and (5.22). The real work of

this report then begins in §6. A high point (at least for the author) in the

present exposition comes in sections 7 and 8, where the physical meanings of

the eigenvalues of the system matrices become clear, and where the

eigenvectors of the system matrices are shown to give rise to linearly

independent pieces of the radiance distribution. The development continues

until the main goals of this work are reached in §16 and §17.

Acknowledgments. Initial numerical explorations of the eigenvalue and

eigenvector problems defined here were made by Curtis D. Mobley, who was

partially supported by a TOGA (Tropical Ocean Global Atmosphere) Council

contract, and who also was partially supported by the National Climate Program
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Office through the Climate Research Group at the Scripps Institute of

Oceanography. Ryan Whitney did the word processing and Joy Register helped

with the figures.
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2. EQUATION OF TRANSFER AND BOUNDARY CONDITIONS

We begin with the equation of transfer for unpolarized spectral radiance,

N(y;~) (Wom-2ostr-lonm-l), in a source-free, non-fluorescing medium at

(dimensionless) optical depth y along direction ~:

-~ :y N(y;i) • -N(y;i) + w(y) f N(y;i') p(Y;i';i) dn(i')
-

(2.1)

x ~ y ~ z ; ~ E _ ~ = cose

Here: is the unit sphere of directions and w(y) = s(y)!a(y) 1S the

scattering-to-attenuation ratio, or albedo of single scattering. s(y) (in

m- 1 ) is the volume total scattering function, and a(y) (in m- 1 ) is the volume

attenuation function. Hence the volume absorption function a(y) (in m- 1 ) is

given by a(y) = a(y)-s(y). Moreover, p(y;~';~) (in str- 1 ) is the phase

function and is related to the volume scattering function a(y;~';~) by

(2.2)

The phase function has the property

(2.3)

for all ~' in the unit sphere E. Hence p(y;~';~) may be viewed as the

probability that a photon incident along ~' at depth y is scattered into a

unit solid angle about ~, on the condition that the photon is scattered. (For

a probabilistic interpretation of radiative transfer theory, see

Preisendorfer, 1965, Ch. XIII.)

5
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Figure 1 shows the geometric arrangement of the body X[x,z], x < z, of

the natural hydrosol, its upper boundary X[a,x], and its lower boundary

X[z,b]. In the present discussion X[a,x] is the infinitesimally thin average

plane of the random air-water surface. We imagine level a to be just above

and level x to be just below the surface. X[z,b] can be either an

infinitesimally thin, opaque, matte reflecting bottom at a finite optical

depth z below x, or an optically infinitely deep, homogeneous medium below

depth z, wit~ b =~. Both cases will b~ considered below.

The boundary conditions for (2.1) at the random upper air-water surface

are

N(a;i) = I N(x;i' ) t(x,a;i' ;i) dn(i')
-

+ I N(a;i' ) r(a,x;i' ;i) dn(i' )
-

N(x;i) = I N(a;i' ) t(a,x;i' ;i) dn(i' )
--

+ I N(x;i' ) r(x,a;i' ;i) dn(t')
-+

t £ -

(2.4)

(2.5)

Here =+ and ~_ are the upper and lower hemispheres of ~, respectively.

The rand t functions describe how radiance is on average reflected and

transmitted by the boundary surface. These are determined by a Monte Carlo

method as developed in Preisendorfer and Mobley (1985, 1986) and applied to

the Natural Hydrosol Model in Mobley and Preisendorfer (1988).

The boundary condition for (2.1) at the bottom level z is given by

(2.6)

6
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i
//~-J..WIND

X[a, x]
a / <00
x /,,~~

X[x, y] / /~'r-
/ /

Y ~-- -------""
X[y, z]

z
X[z, b]

b

k

Figure l.--The geometric setting of the National Hydrosol Model in a plane
parallel medium with a wind-oriented coordinate system. The i vector is
in the downwind direction; the i-l-~ vectors form a right-handed
coordinate system. A direction t is specified by the polar angle a,
o ~ a ~ w, and the azimuthal angle ~, 0 ~ ~ < 2w.
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This is simpler than (2.4) or (2.5) because there are no upward or

downward radiances postulated at level b, when X[z,b] is either of the two

cases defined above.

8
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3. QUAD-AVERAGED EQUATION OF TRANSFER AND BOUNDARY CONDITIONS

The unit sphere = is shown in Fig. 2 partitioned into a set of quads

which includes as special cases a pair of polar caps. There are m quad zones

above and m quad zones below the equator, with each cap counting as a special

zone. Each hemisphere is divided into 2n azimuthal sectors. In Fig. 2, m = 5

and 2n = 20.

A non-polar or regular quad Quv is indexed by a pair of integers u,v

where u = l, ••• ,m-l is the zonal index and v = 1, ••• ,2n is the azimuthal

index. Regular quads Quv have equal angular widths 6,v = 6$ = wIn and

arbitrary heights 6~u. Quad Quv is centered at azimuth angle 'v = (v-I)6, and

subtends a solid angle 0uv = 6'6~u. Polar caps are denoted by "Qm" and

subtend solid angles of size Om = 2w6~m. It will be clear from the special

notation developed below which hemisphere (=+ or =_) a cap or quad is in.

The quad-averaged radiance over quad Quv is defined by writing

N(y;u,v) _ 0- 1 J N(y;~) dO(~)uv Quv

O.l>

Here we used an alternate description of ~ via its zenith (~ = cose) and

azimuth (,) coordinates. When Quv is in =+ or in =_ we will write the

associated quad-averaged radiance as "N+(y;u,v)" or "N-(y;u,v)",

respectively. In each of these cases, u runs from I to m- 1 and v from 1 to 2n

for regular quads. The quad-averaged radiance over a polar cap, for which

u = m and v is undefined, is denoted by "N+(y;m,·)" or "N-(y;m,·)".

The quad-averaged phase function is defined by writing

9
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Figure 2.--An example partitioning of the unit sphere into quads and polar
caps, for the case of m = 5 and n = 10. The coordinate system and quad
indexing scheme is centered in the wind direction. Quad Qr is shown in
the lower hemisphere of directions, =_, and Quv is shown inSthe upper
hemisphere, =+.

10



p(y;r,slu,v) _ 0-1
uv

§3

J J d~d, J J d~'d,' p(y;~I"I;~,,)
Quv Qrs

x ~ y ~ Z ; Qrs and Quv in =+ or =_

Observe that there are three special cases involving polar caps; these

are denoted by

p(y;m,· lu,v)

p(y;r,slm,·)

p(y;m, ·Im,·)

(cap to quad)

(quad to cap)

(cap to cap)

(3.3)

Applying the quad-averaging operation to (2.1) we find the desired quad-

averaged equation of transfer:

-~u :y N(y;u,v) = -N(y;u,v) + w(y)

x ~ y ~ Z

LLN(y;r,s) p(y;r,s;u,v)
r s

(3.4)

Here ~u = ~(~1 + ~2)' where ~1 and ~2 are the lower and upper cosines of the

Quv boundaries. ~u can be positive or negative. The summation in (3.4) is

over all quads. Equation (3.4) is a set of (m~1)'2n + (m-l)·2n + 2 =

4(m-l)n+2 coupled ordinary differential equations with the same number of

unknowns.

The quad-averaged forms of the surface boundary conditions (2.4) and

(2.5) are

11
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N(a;u,v) = L L N(x;r,s) t(x,a;r,slu,v) + L L N(a;r,s) r(a,x;r,slu,v)
r s r s

Quv in
0.5)

=-+

N(x;u,v) = L LN(a;r,s) t(a,x;r,slu,v) + L L N(x;r,s) r(x,a;r,slu,v)
r s r s

Quv in 0.6)
~-

where the four surface transfer functions t(a,x), r(x,a), t(x,a), and r(a,x)

are all defined following the general patt~rn

0.7)

where "f(lJ',cjl';lJ,cjl)" denotes any of the four transfer functions in (2.4) or

(2.5). The bottom boundary condition in quad-averaged form is

N(z;u,v) = LLN(z;r,s) r(z,b;r,slu,v)
r s

12
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4. QUAD-AVERAGED LOCAL INTERACTION PRINCIPLES

The quad-averaged equation of transfer (3.4) may be split into two

statements, one for the upward radiances N+(y;u,v) and one for the downward

radiances N-(y;u,v) at each level y, x ~ y S z. The isotropy of the volume

scattering functions a(y;~I;~), namely the property that its values depend

only on ~I.~ and not ~I and ~ separately, considerably simplifies the

structure of the transfer equation. Thus we can write

Qrs in - and Q in =++ uv

"p+(y;r,slu,v)" for p(y;r,slu,v) if or

Qrs in - and Q in -uv

(4.1)

Qrs 1.n - and Q in -+ uv

"p-(y;r,slu,v)" for p(y;r,slu,v) if or

Qrs in - and Quv in -+

Hence p+ and p- respectively act like local transmittance and reflectance

functions in the body of the medium, relative to the horizontal plane of the

equator of:. We then find from (3.4) that

-N±(y;u,v) + w(y) LL N+(y;r,s) p±(y;r,slu,v)
r s

(4.2)

+ w(y) LLN-(y;r,s) p+(y;r,slu,v)
r s

u = 1, ••• ,m; v = l, ••• ,2n.

This is a coupled pa1.r of differential equation systems. The upward

system 1.S obtained by taking all upper signs together. This system describes

the evolution with optical depth y of the upward radiances N+(y;u,v). The

downward system describes N-(y;u,v). The complete system (4.2) constitutes

13
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the local interaction principles or the local forms of the principles of

invariance. See Preisendorfer (1965, p. 103), 8.0., Vol. III, p. 4, and

Vol. II, p. 295. The boundary conditions (3.5), (3.6), and (3.8) hold also

for (4.2).

14
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5. SPECTRAL FORM OF THE QUAD-AVERAGED LOCAL INTERACTION PRINCIPLES

We next split the equation set (4.2) into smaller groupings of dependent

variables by means of Fourier polynomial analysis. This entails no loss of

information of the radiance field but considerably facilitates the numerical

solution of the set (4.2).

+For fixed y and u, N-(y;u,v) is a function defined on the finite set

consisting of an even number of integers v = 1, ••• ,2n, corresponding to

azimuth angles ~v = (v-1)~~, as defined, above. We may then represent this

+v-dependence of N-(y;u,v) by

where

(5.1)

and

1 = O, ••• ,n

+A-(y.u.1) = y-l
2 " - 1

1 = 1, ••• ,n-1

2n
2

v=l

2n
2

v=l

+
~(y;u,v) cos(1~ )

v
(5.2)

(5.3)

+These Ap(y;u,1), p = 1 or 2, are the radiance amplitudes for (harmonic) mode

1. The factors £1 and Y1 are given by

15
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2n if 2.=0 or 2.=n

£2. -
n if 2.=I, ••• ,n-l

0 if 2.=0 or 2.=n

Y2. -

(5.4)

(5.5)

n if 2.-1, ••• ,n-l

Observe that Y2. = £2. = n over the range 2. = 1, ••• ,n-l.

Since ~v = (v-l)w/n, we see that sin(2.~v) = 0 for 2. = 0 and 2. = n. Hence

we will define A1(Y;u;0) = 0 and A1(y;u;n) = 0 for u = 1, ••• ,m. Also note

that

+ +
A~(y;m;O) _ ~(y;m,·)

(5.6)

and that

2.=I, ••• ,n

+
Ai( y;m; 2.) _ 0 2.=0, ••• ,n (5.7)

Therefore all radiance amplitudes for the polar caps are zero, except for the

cosine amplitude for the zero azimuthal index, 2. = o. Holding y, r, s, and u

fixed, we can represent the phase function, as a function of v, in Fourier

polynomial form:

n

~
2.=0

+
p-(y;r,u;2.) cos2.(~ -~ )

s v
(5.8)

r,u = 1, ••• ,m

where

s,v = 1, ••• ,2n

16



§5

p±(y;r,u;t)

t = O, ••• ,n

2n
= [EtCOS(t'S)]-l L

v=l

+
p-(y;r,slu,v) cost(, -, )

s v
(5.9)

The representation (5.8) takes its form by virtue of the isotropy of the

volume scattering function, noted above in sec. 4.

The Fourier representations of N±(y;u,v) and p±(y;r,slu,v) in (5.1) and

(5.8) are now substituted into (4.2). After rearrangements, and various

definitions involving p±(y;r,u;t) have been made, we arrive at three

autonomous sets of equations over the range x ~ y ~ z. The first set is for

the zero-mode cosine amplitudes of the radiance distribution:

where

+ + +
!7(y;0) _ [A~(y;l;O), ••• ,A~(y;m;O)]

(5.10)

(5.11)

The remaining n cosine amplitudes are governed by

where

t = 1, ••• ,n

and finally the n-1 non-zero sine amplitudes are generated by the set

17
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(5.14)

where

(5.15)

I. OIl 1, ••• ,n-1

The matrices £(y;l.) and i(y;l.) are either mxm or (m-1)x(m-1), as can be

+inferred in each case from the number of components of the ~p(Y;I.) vectors,

p = 1,2. These matrices are fully defined in Mobley and Preisendorfer

(1988). What should be noted here is that i(y;l.) is a local transmittance

matrix in the sense that it propagates A~(Y;I.) into A~(Y;I.) over an

infinitesimal increment 6y of optical depth. ~(y;l.) acts as a local

reflectance matrix in the sense that it respectively converts A~(y;l.) into

+Ap(y;l.) over dye In this way the rising and descending streams of photons in

an infinitesimal layer X[y,y+6y] of a medium X[x,z] feedback to each other and

generate the multiply scattered radiance field.

The preceding three autonomous sets of coupled differential equations all

fall into the following general pattern

x S Y S z

(5.16)

p = 1,2

with

+A-(y;l.)
-p

q = m-l

I. = O, ••• ,n

or m

18
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Thus the amplitude vectors A±(y;l) in (S.16) are lxq and the matrices

i(y;l) and ~(y;l) are qxq, where q is either m-l or m, as the case may be,

i.e., depending on which of (S.10), (S.12), or (5.14) we are considering.

Once the three sets (5.10), (S.12), and (S.14) are solved we will have at

+each depth y exactly enough amplitudes to construct the radiances H-(y;u,v),

u = 1, ••• ,m; v a 1, ••• ,2n via (5.1). We will have for each flow (±), n+1

+cosine amplitude vectors ~T(y;l), 1 = O, ••• ,n and n-l sine amplitude vectors

+
~2(y;1), 1 = 1, ••• ,n-1, each with m-l or m components, as needed.

The surface boundary conditions at X[a,x] that go with (S.16) are

n n+ I + t (x,a;kI1) + I A-(a;k) r (a,x;kI1)A (a;l) = A (x;k)
-p k=O -p -p k=O -p -p

n n
A-(x;l) = I A-(x;k) t (a,x;kI1) + I + r (x,a;kll)A (x;k)
-p k=O -p -p k=O -p -p

P = 1 or 2 , 1 = O, ••• ,n, and k+l even.

(S.18)

(S.19)

These are obtained by using the Fourier representations of each member of

(3.S) and (3.6) and reducing to the indicated forms in (5.1S) and (S.19). The

azimuthal (,-behavior) symmetries of the random wind-ruffled air water surface

are those of an ellipse (cf. Mobley and Preisendorfer, 19S5), which among

other things require !p and !p to vanish when k+l is odd. Hence the sums in

(S.lS) and (5.19) may be restricted to those values of k and 1 for which k+l

is even.

A

The entries of the four transfer matrices !p' !p in (5.1S) and (S.19) are

given in Mobley and Preisendorfer (1988). Observe that these are mxm

matrices, some of which have zeros in their mth rows or mth columns (see

Tables 1 and 2, Mobley and Preisendorfer, 1988). The essential point to note
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for later work (§12, below) is that the amplitude vectors ~~(x;k) and ~~(a;k)

in (5.18) and (5.19) must be augmented to have m components, to be compatible

with these surface transfer matrices.

The lower boundary surface is usually less complex than the random air-

water surface. We therefore postulate a directional isotropy of the surface

at level z in X[x,z] in analogy to the isotropy of the phase function in

(5.8). Hence we shall represent the v-behavior of r(z,b;r,slu,v) as

n
r(z,b;r,slu,v) = I

1=0
r(z,b;r,u\1) cos1(~ -~ )

s v
(5.20)

where

r,u = l, ••• ,m s,v = 1, ••• ,2n

r(z,b;r,uI1)

1 = O, ••• ,n

2n
- [£1 COS(1~s)]-1 I

v=l
r(z,b;r,slu,v) cos(1~ )s (5.21)

With these definitions, (3.8) converts to spectral form as

+ -A (z;1) = A (z;1) r (z,b;1)
-p -p -p

p = 1 or 2 and 1 = O, ••• ,n

(5.22)

where the entries of !p(z,b;1) are defined in Mobley and Preisendorfer (1988)

for the two main cases of interest: (1) a matte bottom and (2) an imaginary

surface above an infinitely deep homogeneous layer. Observe that the

azimuthal isotropy of X[z,b] allows the reflected amplitudes ~;(Z;1) in (5.22)

to be uncoupled from all other modes ~~(z;k), k * 1, incident on X[z,b]. The

water surface X[a,x] is not a~imuthally isotropic and so coupling takes place,

as explicitly shown in (5.18) and (5.19).
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6. THE FUNDAMENTAL MATRIX FOR RADIANCE AMPLITUDES IN HOMOGENEOUS LAYERS

We may now proceed to the main interest in this study, the solution of

the equation set (5.16) when w(y) and p(y;~';~) in (3.4) and hence £(y;1) and

i(y;1) are independent of optical depth y 1n an arbitrary layer X[x,z] of a

natural hydrosol. The solution procedure we develop is independent of whether

p = 1 or 2 or what mode index 1 = O, ••• ,n is of current interest.

Accordingly, we can until further notice drop both "p" and "1" from the

notation in (5.16). (Both p and 1 will have to be reinstated in §12, for

example, when boundary conditions (5.18) and (5.19) are to be used, and also

when the final Fourier synthesis of N±(y;u,v) in (5.1) is made).

A. Basic Local Interaction Principles

We will, in accordance with the preceding notational convention, now work

with the following streamlined versions of (5.16) and (5.17):

(6.1)

(6.2)

x S Y S z

+Thus £ and i are qxq matrices with constant entries and ~-(y) at each depth y

are 1xq vectors. We may further simplify the system (6.1) and (6.2) by

writing

and

Ox2q)

21
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(2q)(2q) (6.4)

so that (6.1) and (6.2) become the following version of the local interaction

principles:

x S Y S z

B. The Constructive Definition of M(x,y)

Equation (6.5) can be integrated at once either numerically or

(6.5 )

formally. We shall concentrate here on the former. Numerically, one would

choose an initial 1)(2q vector ~(x) and then march (6.5) down from level x to

any level y, x S y S z, in the given medium X[x,z]. There are many such

initial vectors ~(x) from which one may start. For example, one may have

measured the radiances N±(x;u,v), u = 1, ••• ,m; v = 1, ••• ,2n at level x just

below the surface. From these radiances one can find A±(x) as shown in (5.2)

and (5.3); whence ~(x). Then the amplitude ~(y) is found by integrating

(6.5), with ~(x) as initial vector, down to any desired depth y, x S y S z.

There is one important set of initial vectors ~(x), however, that leads

to the general solution of (6.5). This is the set of 2q, 1)(2q initial vectors

stacked vertically to form the 2q)(2q matrix:

1 0 0 0 0
0 1 0 0 0

~(x,x) - = I (6.6)-2q
000 1 0
000 o 1
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.
where 12 is a 2qx2q identity matrix. Thus the initial lx2q vectors form the

- q

2q rows of the matrix ~(x,x).

Let !j(y) be the lx2q vector solution of (6.5) for the initial lx2q

vector !j(x) • [0, ••• ,1, ••• ,0] where all components are zero except that in

place j, 1 ~ j ~ 2q. Thus !j(y) satisfies (6.5):

Write

j = 1, ••• ,2q

~(X,y) _ (2qx2q) (6.7)

m
2
"(y)

-q

Then clearly

d
dy ~(x,y) = ~(x,y) K

and

_H(x,x) = I
-2q

(6.8)

(6.9)

The 2qx2q matrix H(x,y) in (6.7) is the fundamental matrix of the system of

differential equations (6.5). The importance of this system rests in the fact

that if ~(x) is any lx2q vector, then the depth dependent lx2q vector

~(y) _ ~(x) ~(x,y) is the solution of (6.5) with initial value !(x). This
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follows formally on multiplying (6.8) from the left by !(x) and reducing the

result to (6.5). The mathematical reason for this remarkable property is that

the 2q vectors !j(y) defined above are linearly independent for each y,

x ~ y ~ z. Therefore any solution ~(y) of (6.5) at some y is a vector in the

space spanned by the ~j(Y) (cf. Coddington and Levinson, 1955, pp. 68, 69).

Thus we have the mapping property of ~(x,y):

(6.10)

This mapping property also can be written down for the fundamental

solution N(y,z) of (6.5) for which N(y,y) = I 2 and where _N(y,z) is obtained
- - q

by integrating (6.8) starting from level y. The associated mapping property

is then !(y) N(y,z) =!(z). Combining this with (6.10), noting that we have

also ~(z) = A(x) ~(x,z), and letting ~(x) be arbitrary, we obtain the group

property of ~(x,z):

!(x,z) =!(x,y) !(y,z)

x ~ y ~ z.

Setting x = z in (6.11), the inverse of N(x,y) is found to be

(6.11)

(6.12)

One may for example determine ~(y,x) by integration, on starting at level y

and integrating (6.5) upward from y to x. This would result in an associated
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mapping property for ~(y,x) with initial amplitude !(y). Alternately, one may

invert ~(x,y) by algebraic or numerical means to find H(y,x). Thus ~-l(x,y)

has the physical interpretation of the mapping operator ~(y,x), i.e., from

level y to level x < y. From our observations above on the vector space

aspects of ~(x,y) it is clear that ~-l(x,y) exists in all natural hydrosols

where £(y;l) and i(y;l) vary continuously with y. Since constant functions

are continuous, this result holds also here.

c. Exponential Representations of ~(x,y)

The preceding definition of ~(x,y) is the constructive definition, the

one that will at once yield numerical values for the amplitude vectors !(y).

It can be used even when £ and i depend on y. There is, however, a formal

definition of ~(x,y) that is of great heuristic value; indeed it will lead us

to the eigenmatrix representation of !(y), the central formula of the present

study. This is the definition that starts from (6.8) and visualizes ~(x,y) as

given by the same kind of formula found in the theory of the scalar-valued

exponential function. Thus let us write

(6.13)

and

CD

exp[!(y-x)] - L
j=O

(6.14)

The operations 1n each term of the series (6.14) are numerically possible and

convergence of the infinite series can be established. Hence in principle the

exponential of the matrix !(y-x) is computable arbitrarily accurately. It is

easy to verify (just as in elementary calculus) that
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(6.15)

Hence ~(x,y), as given in (6.13), satisfies (6.8). When using the exponential

form (6.13) for ~(x,y), the mapping and group properties are immediately

D. Eigenmatrix Form of H(X,y)

The operations in (6.14) would be considerably simpler if K were a

diagonal matrix. Suppose for the moment we can reduce K to diagonal form K.

That is, suppose we can find a 2qx2q invertible matrix E such that

where

K = E I( r 1

I( = diag[K1,···,K,1( 1, ••• ,K2 ]q q+ q

(2qx2q)

(2qx2q)

(6.16)

(6.17)

Then directly from (6.14) we deduce that

~(x,y)
'"
2

j=O

= "'l E-l]j (y-x)j
[E K j!j-O - - -

(2qx2q) (6.18)

where

26
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In this case, then, exp[!(y-x)] can be evaluated numerically quite readily,

provided we know the 2qx2q matrix ~ and the 2q numbers Kj,j = 1, ••• ,2q. By

(6.16) B and the Kj are the eigenstructures of K. That is, from (6.16), we

have

K B = B K

which requires that E = [!l

(6.20)

!q !q+l ... !2q] be thought of as a matrix

made up of 2qxl vectors !j' j = 1, ••• ,2q, each of which satisfies the

eigenvector equation

K e. = K. e.
-~ J~

j = 1, ••• ,2q (6.21)

From this we see that Kj is the eigenvalue of ! associated with the

eigenvector !j of!. This fact about the !j and Kj is central to the present

study. We shall next reapproach (6.20) from a more physical direction. This

will allow us to see the eigenstructures !j and Kj as arising from the local

reflectance and local transmittance matrices comprising K in (6.4).
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7. PHYSICAL BASIS OF THE EIGENMATRIX REPRESENTATION OF THE FUNDAMENTAL
SOLUTION

We return to the setting of (6.18) and (6.20) to provide a physical basis

for these formulas. In particular we may ask: what is the physical basis for

the diagonal matrix K in (6.19) and for the vectors ~j forming E? Further,

what physical reason may be given for the invertibility of ~?

A. A Natural Basis for the Radiance Amplitude Vectors

If one plots the natural logarithm of N(y;u,v), for fixed u,v, as a

function of depth y, in a deep homogeneous natural water body, one sees the

curve become essentially straight from some depth Yo downward. There is a

depth Yo for which this is uniformly true for all u,v, u = l, ••• ,m;

v = 1, ••• ,2n. Now, if the medium is homogeneous and infinitely deep and Slnce

(6.5) is a linear system, there is the intuitive suggestion that perhaps there

may be some linear combination of the observable vectors ~(y) that decays (or
/

grows) precisely exponentially with depth y; and conversely, these purely

exponentially decaying and exponentially growing functions may perhaps be

linearly combined to yield ~(y). To see where this leads, let us postulate

the existence of 2q distinct exponential functions in y, over the range

x ~ y ~ z, of the form

+ + +
B:(y) = B:(x) exp[K:(y-X)]

J . J J

j = l, ••• ,q

(7.1 )

+where K~, j = l, ••• ,q are 2q distinct real numbers.* They are just as general
J

* Recall that y in the body of this study is optical depth, so that y = a~,

where ~ is the associated geometric depth and a is the volume attenuation
coefficient. Hence the K-

i
: are dimensionless. They correspond to physical

. ff' . -+ -+attenuatlon coe lClents } = aK}o
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as the Kj in (6.17), and in fact we can

Kj with Kj for j = q+1, ••• ,q. Hence

d + +
--d 8:(y) = K: 8.(y)

y J J J

j • 1, ••• ,q.

pair K· with K~ for j =
J J

1, ••• ,q, and

(7.2)

We can assemble these functions into the 1 x q vectors corresponding to

+( ) . .
~- y , by wrltlng

(lxq) (7.3)

and into the 1x2q vector

( lx2q) (7.4)

corresponding to ~(y). Thus (7.1) may be written as

where

(7.5 )

(qxq) (7.6)

and moreover,

!(y) =!(x) exp[~(y-x)]

29
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where

+ -Ie = diag[~ ,~ ]

Furthermore (7.2) can be written as

or more compactly still as

(2qx2q) (7.8 )

(7.9)

(7.10 )

Let us now return to (7.1) and observe that the 2q functions of y, 8}(y),

j = 1, ••• ,q, over the depth range of y in X[x,z], are linearly independent.

This follows at once from the fact that the Ie} are pairwise distinct and a

direct appeal to the definition of linear independence of functions over a

common domain (cf. Courant, 1936, p. 439). The set of all linear combinations

+of the 81(y) therefore forms a 2q dimensional vector space of functions on

X[x,z]. We assume that each radiance amplitude A±(y;u), for fixed u, is in

such a space. (This assumption will be verified later.) Then we may write

q q
+

L
+ f~±(u) L 8:(y) -+

(7.11)A-(y;u) = 8. (y) + f.-(u)
j=l J J j=l J J

u = 1, ••• ,q x :S Y :S z.
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where the fj±(u) and fj±(u) are suitable coefficients, to be determined.

Equation (7.11) may be placed into vector form if we write

f~± ++ ++
- [f.-(1), ••• ,f.-(q)]

-J J J
and

-+ -+ -+f.- - [f.-(1), ••• ,f.-(q)]
-J J J

(lxq)

(lxq)

(7.12)

(7.13 )

over the index range j = 1, ••• ,q. Then (7.11) becomes

q q
+

2 + f~± 2 8:(y) -+A-( ) = 8. (y) + f.-- Y J -J J -Jj=1 j=1

x ~ y ~ z

In matrix form, this 18

(7.14)

or

where

+
= [,~ (y), 8 (y)]

[

!.++ !.+-J
-+ --F F- -

(7.15 )

(7.16 )

F =

and where
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++ f±+C-

_1 _1

++ F±+ (7.17)F-- = =
++ ±+f -- f

-q -q

In this way we have physically motivated the 2q x 2q depth independent mapping

~ of the exponential basis vector ~(y) into the observable radiance amplitude

vector ~(y) at each y, x S y S z.

The preceding mapping can also be postulated to go in the reverse

direction. Analogously to (7.11) we may now assume the existence of suitable

coefficients ej±(u) and ej±(u), to be determined, so that

q q
+

L + ++ L A-(y;u) -+a:(y) = A (y;u) e.-(u) + e.-(u)
J u=l J u=l J

j = l, ••• ,q x s y s z.

Following the pattern in (7.12) and (7.13) but noting the difference in

running-index variables in each case, we can write, with j = l, ••• ,q,

(7.18 )

(7.19)

Then (7.18) takes its vector form

+
a-( ) =- y

q

L
u=l

q

L
u=l

- -+A (y;u) ~ -(u) (7.20 )

In matrix form this is
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[

!++ !+-J

-+ --E E- -

i.e. ,

where

E ... [!++ !+-J
-+ --E E- -

and where

(7.22 )

(7.23 )

On comparing (7.10) and (7.22) we see that

F = E-l (7.24)

provided ~1 exists. Before looking into the matter of the existence of !-1,

we derive from (7.16) and (7.22) the two results of immediate interest.

B. The Eigenstructure Equation

Let us suppose there is a mapping! (as in (7.22» of an arbitrary

solution vector ~(y) of (6.5) into a vector of the form ~(y) governed by

(7.10). Then, on the one hand we have
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On the other hand, by (6.5) and (7.22)

d d--d [A(y) E] = A(y)K E =--d B(y)
y - - -- y

(7.25 )

(7.26)

Thus we find, on comparing (7.25) and (7.26), that E and K must necessarily

satisfy the relation

(7.27)

which shows that ~ and ~ must be the eigenstructures of!. Thus E and K are

determined solely by the local reflectances and transmittances of the

medium. This is the first result.

c. The Eigenrepresentation of H(x,y)

The connection between the fundamental solution ~(x,y) and the

eigenstructures ~ and ~ of ! is the second result, and may be established as

follows. By the mapping property (6.10), along with the connections (7.7) and

(7.16), we have, for any A(x):

(7.28 )

By (7.22) for the case of y = x, we can replace B(x) by ~(x)~ to find
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Since ~(x) 1S arbitrary, we have the desired connection:

(7.29)

Thus we see the linear combination coefficients in (7.11) and (7.18) are

connected directly with the eigenvectors of ~, while the growth and decay

+ +rates K} of the 8}(y) are the eigenvalues of~. These are the desired

physical interpretations of ! and ~ in (7.27).

We can now work backwards to construct the desired solution of (6.5):

From knowledge of K we can solve the algebraic problem (7.27) to find the

matrices ~ and K. From ~ we can construct the ~(y) by (7.7), and from

F = e- 1 we can construct the amplitudes ~(y) z ~(y)~. 8y (7.28), (7.29), and

(6.18) we see that indeed ~(y) is a solution of (6.5) with K =! ~ ~l. Thus

(7.29) is the fundamental matrix solution yielding the desired radiance

amplitude vectors ~(y) = ~(x) ~(x,y) at each y in X[x,z], and associated

initial amplitude ~(x). After some further work on the transport formulation

of this problem, we can translate the final results of the preceding steps

into simple, elegant formulas (cf. (9.23) along with (16.2) and (16.3».
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8. PHYSICAL FEATURES OF THE EIGENHATRIX AND ITS EIGENVALUES

The decomposition of the radiance field into an upward (+) and a downward

(-) set of flows imparts special properties to the eigenstructures E and K of

the system matrix K ln (6.4). By exploiting our physical image of this two-

flow decomposition, we can go considerably further than standard differential

equation procedures in solving the system (6.5).

A. TWo-Flow Partition of E; first form

Our first action will be to re-partition the matricial set of eigenvector

solutions e· in (6.20):
-J

E = [e ... e e ... e ]
_1 -q -q+l -2q

associated with the eigenvalues

K1 ,···,K , K 1, ••• ,K 2q q+ q

(2qx2q) (8.la)

(8.lb)

Going by the pattern (7.21), let us split each e· in (8.la) into two qxl
-J

column vectors. Thus let us write

[:~:J :: e. when j = l, ••• ,q (8.2)
-J

and

[:n - e. when J = q+l, ••• ,2q (8.3)
-J
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++This is simply another way of arranging the coefficients e~-(u) and
J

e;+(u) in (7.18). The reason for this rearrangement will now become clear.
J

B. Reversal Properey of Eigenveceors and Eigenvalues

Suppose e· is a 2qxl vector of the form (8.2) with eigenvalue K
J
.,

-J

j = 1, ••• ,q. The reverse ~~ of ~j is defined as

_ n e. (8.4)
.:1 -J

Here g is the 2qx2q reversal matrix. Next observe by straightforward

computation that g has the properties

n2 = I
:s -2q

and

g ~ = -K g

In view of (8.5), this last equation may be written

g ~ g = -K

Now let ~j be an eigenvector of K with associated eigenvalue

definition

K ••
J

(8.5)

(8.6)

(8.7)

Then by

j = 1, ••• ,q (8.8)
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Multiplying (8.8) by g on the left and using (8.5) we find

which, by (8.7) and (8.4) reduces to

K e~ :: -Ie· e~
-J J -J

(8.9)

j :: l, ... ,q.

We conclude that if (~j' lej) is an eigenpair of ~, then so also is

(e~, -Ie
J
.), j = l, ••• ,q.

-J From this we see that the eigenvalues lej of K come in

Hence in (8.2) and (8.3) we deduce that, for:: l, ••• ,q.

in (8.lb), lej+q =

~j+q = ~~ for j

signed pairs lej' -lej' j = l, ••• ,q. If we re-index these eigenvalues so that

-Ie· for j = l, ••• ,q, then it follows that in (8.la),
J

j = l, •.. ,q

++ +
(8.10a)e. = e. - e.

-J -J -J

-+ +- (8.10b)e. = e. - e.
-J -J -J

In this way we see how the isotropy of the volume scattering function allows a

simplification of the double-direction superscripts of the eigenvectors.
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c. Two-Flow Partition of ~; second form

By (8.10), we may now write E in (8.1a) as

E

+
E

(8.11)

In other words, the reverse symmetry of K implies that in (7.22),

++ +
E = E _ E

-+ +-
E = E _ E

The specific display of the eigenvector partitions in E is then

(8.12a)

(8.12b)

where

E =0 r
+. + I - -je ···e Ie ···e

-=~-------=~-~-=~-------~-- - I + +
e ···e 'e ···e

1 q: 1 q

(8.13)

+ + + Te: _ [e:(l), ••• ,e:(q)]
-J J J

j = 1, ••• ,q (qx1)

+and where "T" denotes transpose, so each e":' is qxl.
-J

D. Two Basic Physical Features of the Radiance Field

We now use some of our intuition about light fields in natural and

laboratory waters to infer informally some physically plausible properties

about the eigenstructures of the system matrix ~ in (6.4), as are expected to
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hold in such media. In optically deep source-free homogeneous media X[x,z]

with positive absorption coefficient, a > 0 (at some arbitrary fixed

wavelength), we expect that

(i) Starting at level x with input A-(x,u) and zero input A+(z,u), A-(y;u)

for each fixed u eventually decays exponentially with increasing depth

y. Conversely, starting at level z, with input A+(z;u) and zero input

A-(x;u), A+(y;u) for each fixed u eventually decays with decreasing depth

y.

(ii) Each of the + and - modes of decay in (i) has q degrees of freedom at and

near the respective initial boundary. [For example, the sun can be

systematically raised above the horizon while we are at level x. For

each sun position, !-(x) is then seen to take on a particular orientation

in its"q dimensional vector space. Hence the full q-dimensionality of

A(y) for y near x must be employed to cover this wide range of incident

radiances.]

Now without loss of generality we may arrange the non-negative members of

the set of 2q eigenvalues ±Kj' j = l, ••• ,q into ascending order:

~ Kq • From (i) we deduce that Kl must be positive: Kl > o.

From (ii) we deduce that the q eigenvalues Kj must be distinct, so that

o < Kl < K2 < .0. < Kq • Next, from linear algebra we know that the pairwise

distinctness of the 2q eigenvalues Kj of ~ implies the linear independence of

the set of 2q eigenvectors !j of ~ (cf. Franklin, 1968, p. 73), so that E has

an 1nverse e- 1 = F.

by virtue of (7.20):

Statement (ii) actually implies a stronger property of ~,

+ + --the set of vectors !l""'!q and the set !l'."'!q are

each linearly independent. Hence (~+)-l and (~-)-l must exist on physical

grounds.
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While the preceding properties (i), (ii) and their consequences are not

offered as mathematical theorems, the reader may perhaps agree that for a real

plane-parallel homogeneous optical medium with a > 0 drawn at random, the

probability is zero that the preceding assertions about ~ and K are not

true. Indeed, we can reverse the matter as follows. We can say that a choice

of a(y,X) and a(y;~';~,X) for a homogeneous medium is realistic provided ~ ~ 0

and provided the associated eigenvalues ±Kj' j = l, ••• ,q are such that

o < Kl < ••• < Kq , for all wavelengths, all azimuthal modes, and all choic~s

of q. The resultant model is then a realistic model, by definition. It would

appear that a necessary and sufficient condition for a model to be realistic

is that a(y,X) and a(y;~';~,X) yield the inequalities s(y,X) > 0 and

a(y,X) - s(y,X) = a(y,X) > 0 for all y and X.

E. Inversion of ~ by Partitioning

It will be useful to find explicit expressions for the inverse F of E

defined in (7.24). Our discussion in paragraph 0 above showed that on

physical grounds the existence of S-1 is practically certain. Let us

partition the 2q x 2q matrix F analogously to E in (S.ll), so that

f+ I

i~I
_1 I

I
I

[+' ]
I

+ I
F I F f I f
- 1_ _::9___+___::9_F =

____.1.____

= (2qx2q) (S.14)
- I + - +

F I F f I f
- 1- _1 I _1

I
I
I
I
I

f I f+
I-q I -q

+ + +
f: = [f:(l), ••• ,f:(q)]
-J J J

Then by definition, requiring
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yields

+ +
F E + F E = I

-q
- + + -

FE +FE =0
-q

(S.15)

(S.16)

(8.17)

whence

+ - +
(S.lS)F = - F E (E )-1- - -

and

+ + - +
(S.19)F = [! - E (E )-1 E ]-1

Alternately, by definition, requiring

yields

+ +
E F + E F = I

-q
- + + -

EF +EF =0
-q

(S.20)

(S.21)

(S.22)

(S.23)

whence

+ -(!- )-1 + -
(S.24)F = E F

and

- + - +
(8.25)F = [! - ! (! )-1 ! ]-1
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+Therefore, to find ~-l, i.e. to find ~, we may invert the smaller

matrices e± and their algebraic combinations as indicated in (8.18) and (8.19)

or in (8.24) and (8.25).
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9. REPRESENTATION OF THE FUNDAMENTAL MATRIX BY EIGENSTRUCTURES

A. Decomposing the Fundamental Matrix

The fundamental matrix M(x,y) in the mapping rule (6.10) and in (7.29)

can be given a more useful representation provided we partition it in the form

(2qx2q)

Then by (7.29) and (8.13) we have

where ~ = diag[Kl, ••• ,Kq ], and where the Kj now have their indexing as in

§8D. From this, we find the representations of the qxq submatrices of

~(x,y):

~++(x,y)
+ dy-x) + - -dy-x)= E e- F + E e - F

~_+(x,y)
- dy-x) + + -dy-x)= E e- F + E e - F

~+_(x,y)
+ I(y-x) - -dy-x) += E e- F + E e- F

~__ (x,y) - dy-x) + -dy-x) +
= E e- F + E e- F

Clearly
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~++(x,x) = M (x,x) = I
-q

§9 .

(9.7)

M (x,x) = M (x,x) = 0
-+- --+ -q

Observe that !(x,y) depends only on the difference y-x of initial and

final depths in the homogeneous medium X[x,z]. For small depth differences

y-x, the submatrices in (9.3)-(9.6) are, to first order in (y-x),

~++(x,y) = I - !(y-x) (9.3a)
-q

~_+(x,y) = - £'(y-x) (9.4a)

M (x,y) = £'(y-x) (9.5a)-+-

~__ (x,y) = I + !(y-x) (9.6a)
-q

These follow from the fact that, for small y-x, (6.14) 1S, to first order,

B. Interchange Rule for !(x,y)

In a medium such as the present one where we have isotropy of scattering

and homogeneity of inherent properties with depth, we should expect some

useful symmetries of !(x,y). For example, isotropy has reduced our

. . + - . . ++ --cons1derat1ons to E and E 1nstead of the four matr1ces ~ , ••• ,~ •

A considerable amount of computation, however, is obviated by observing

(cf. (6.12» that !-l(X,y) = !(y,x). The latter matrix is readily evaluated

by observing from (9.3)-(9.6) that its four submatrices are related to those

of !(x,y) by
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~++(y,x) = ~__ (x,y) (9.9)

~_+(y,x) = If (x,y) (9.10)
-+-

~+_(y,x) =~_+(x,y) (9.11)

~__ (y,x) = ~++(x,y) (9.12)

These four statements constitute the interchange rule for ~(x,y) on X[x,z].

It holds quite generally and does not depend on isotropy or homogeneity.

However, when homogeneity is taken into account, we can find ~(z,y) without

further computation beyond ~(x,y). The matrix ~(z,y) is used for upward

evolving light fields, while ~(x,y) is used for downward evolving light

fields, as we shall see, below. As for evaluating ~(z,y), suppose z-y = y-x,

then ~(z,y) = ~-l(y,z) = If-l(x,y) = ~(y,x). The latter follows from ~(x,y) by

the interchange rule.

C. The Downward and Upward Evol ving Radiance Ampli tudes

From (6.10) and (9.1) we can write the mapping rule as

(9.14)

This is for the downward evolving light field starting from level x in X[x,z],

x < z. This may be reduced to the numerical level by explicitly writing out

the components of ~++(x,y),••• ,~__ (x,y). Thus from (9.3)-(9.6) and (8.13) we

have
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q q

L + K.(y-X) f+. L - -K.(y-X) f-e. e J + _e. e J .
-J -J J·--1 J -Jj=l

(9.15)

If (x,y)-
--+

q

L - K.(y-X) f+.e. e J +
-J -Jj=l

(9.16)

q q

L + K.(y-X) f- L - -K.(y-X) f+.e. e J . + _e. e J
-J -J J·--1 J -Jj-1

q

L - K.(y-X) -e. e J f. +
-J -Jj=l

Next, the initial condition for the radiance amplitude at level x 1S handled

by writing, for j = 1, ••• ,q,

+ + + (x) (- A(x) e. )a. (x) - A (x) e. + A e.
J -J -J - -J

and

a-:-(x) A+(x) -(x) + (= A(x) R- e. + A e. e. )
J -J -J -J

(9.20)

Observe that ~±(x), being a lxq matrix, and e~, being a qx1 matrix, imply that
-J

+a](x) are scalars of the form

q
+ L + + + A-(x;u) e-:-(u)]a. (x) = [A (x;u) e .(u)
J u=l J J

and
q

a-:-(x) L + e-:-(u) + A-(x;u) += [A (x;u) e.(u)]
J u=l J J

for j = l, ••• ,q.

Thus (9.13) and (9.14) in scalar form are
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L
j=l

§9

a:(x) K.(y-X) f~(u) +
J e J J

q

L
j=l

(9.23)

u = 1, ••• ,q.

x ~ y ~ z.

which describes the downward evolving light field starting at level x in

X[x,z]. This may be used repeatedly in a given medium by simply changing the

+initial amplitudes a3(x), j = 1, ••• ,q. Recall that (9.23) holds for a

particular sine or cosine amplitude Ap(y;u;l) with 1 a particular azimuthal

mode index; p = 1,2 and 1 = O, ••• ,n, and with q = m-1 or m.

The upward evolving light field starting at level z 1n X[x,z] may be

found similarly. Thus from the mapping property for ~(z,y),

(9.24)

(9.25)

If in (9.13) and (9.14) we replace all occurrences of "x" with "z" we obtain

(9.24) and (9.25). Hence the present counterpart for (9.23) is found by

replacing all occurrences of "x" with "z" in (9.23). Equation (9.23)

accordingly represents the general solution of the radiance amplitude equation

(6.5). For numerical values we would need the Kj and the ~j' along with the

initial amplitudes !(x). If !(x) is not given empirically, then it must be

found theoretically from the initial radiance amplitude !(a) incident at level

a on the air-water surface. For this we need the global interaction

principles and various of their consequent laws governing the reflectances and

transmittances of sub-layers of X[x,z].
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10. GLOBAL INTERACTION PRINCIPLES

The global interaction principles allow us to correctly include boundary

conditions into the fundamental solution procedure.

By following the developments in §6c of Mobley and Preisendorfer (1988),

or in §7.4 of 8.0., Vol. IV, we may derive from the fundamental solution two

sets of global interaction principles for the radiance amplitudes in X[x,z].

First the downward evolution set: for a subslab X[x,y] of X[x,z], x $ Y $ z,

we have

+ +A (x) = ! (y) !(y,x) + A (x) !(x,y)

- + -! (y) =! (y) !(y,x) + ! (x) !(x,y)

(10.1)

(10.2)

These statements, while written explicitly for inside the water body part

X[x,z] of X[a,b] = X[a,x] U X[x,z] U X[z,b], actually can be phrased for any

subslab of X[a,b] by replacing x and y by other depth variables in the range

[a,b]. For subslabs X[x,y] the water body itself, we can evaluate the Rand T

matrices as follows, using the fundamental matrix:

(10.3)

(10.4)

and
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(10.5)

(10.6)

Then the upward evolution set for a subslab X[y,z] of X[x,z], x ~ y ~ z, 1S

+ + -! (y) = A (z) !(z,y) + ! (y) !(y,z)

+ -A (z) =! (z) !(z,y) + ! (y) !(y,z)

(10.7)

(10.8)

Once again, these statements can be extended to any subslab of X[a,b] by

suitable replacement of y,z in (10.7) and (10.8) by other depth variables. In

the case of the water body X[x,z] itself, the Rand T matrices are given by

and

R(y,z) =H-l(z,y) H (z,y)
- --- --+

T(y,z) = ~::(z,y)

(10.9)

(10.10)

(10.11)

(10.12)

As a consequence of the homogeneity and isotropy of the medium X[x,z], we

find from the interchange rule and the above H-representations of ~ and T that
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(= R(O,y-x»

(= T(O,y-x»

(10.13)

(10.14)

In other words there is no polarity of the medium (cf. Preisendorfer, 1965,

p. 216). This cuts in half the number of Rand T matrices needed to find the

light field in X[x,z].

We observe that when y-x is small, the various ref1ectances and

transmittances in (10.3)-(10.6) and in (10.9)-(10.12) take the following

forms, to first order in y-x:

(10.15)

(10.16)

These follow at once by using (9.3a-9.6a) in the cited formulas and, after

reducing them algebraically, retaining only terms to first order in y-x.
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11. THE R-INFINITY FORMULA AND SOME APPLICATIONS

The reflectance matrix for an infinitely deep homogeneous layer X[x,~]

plays a central role in the present study of the light field. We shall now

derive an expression for this reflectance and draw some conclusions about the

light field.

Now, from (10.6) we have an expression for !(x,y), the reflectance of the

finitely deep layer X[x,y] in X[x,~]. On letting y+~, using (9.3), (9.4) and

recalling that Kl>O, we have

~ _ lim !(x,y) = lim -M_+(X,y) M;~(X,y) = -E-(E+)-1
y+~ y+m

and 1n like manner, from (10.3), (9.3), and (9.5), we find

= R-
where the last equality comes from (8.17). Hence

(11.1)

(11.2)

+
(F )-1 F (qxq) I (11.3)

The physical significance of !~, S± and ~ comes out on rearranging

(11.3) into the forms

+E = -R E- -
or

+
F = F R-

In vector form these read
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+ (11.4a)e. = -R e.
-J -.. -J

+ (11. Sa)f. = f. R
-J -J -..

for j • l, ••• ,q. Thus we see that ~CD maps the "disembodied" flow F+ into F-,

and also E+ into -E-. Of course the main interpretation of ~CD is obtained

from (10.7) on letting Z+CD. It is clear by homogeneity and from (10.5) that

as Z+CD, !(z,y) + 2q, and so in X[X,CD], we have

+! (y) = A (y) !...

x :S Y < CD

If we explicitly identify the entries of ~CD via

(11.6)

(11.7)

then (11. 4a) and (11.5a) state

q

e:(r) - L R (r,u) +
= e .(u)

J CD Ju=l

q

f:(u) L + R (r,u)= f . (r)
J r=l J CD

r = l, ••• ,q

u = l, ••• ,q

(11.8)

(11.9)

where we have used the component relation defined in (8.13) and (8.14).

Another useful set of relations comes from opening up (7.27):
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(11.10)

+=E Ie (11.11)

whence

The second is

-T E + £. ~.. = -E Ie

whence

(11.12 )

(11.13)

T R- .-..
(11.14)

Eliminating Ie from (11.12) and (11.14), by using (11.1), we find

or equivalently

(11.15)

R P R
-a> --a>

+ (R T + T R ) + P = 0
-a>- --a> - -q
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This formula shows how ~m 1S determined as the solution of a matrix quadratic

equation for ~ in terms of the local reflectance and transmittance

matrices.

The ~ formula (11.3) may be used to simplify the expressions for P± in

(8.19) and (8.25):

(11.17)

(11.18)

These results allow the factoring of ~(x,y) into a product of four basic

matrices. Thus (9.2) becomes

!!(x,y) =

(11.19)

Therefore ~(x,y) is reducible to factors involving only the qxq matrices ~, E+

and ~m.
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12. SURFACE BOUNDARY CONDITION: AUGMENTED MATRIX FORM

The preceding discussion has shown that the solution (9.23) of (6.5)

literally cannot leave the air-water surface at level x unless we know the

initial amplitude vector ~(x) there. Our next main goal is to compute ~(x).

This requires attention to be redirected toward the air-water surface boundary

conditions (5.18) and (5.19). These conditions show that the tth mode

amplitudes A;(a;t) and A~(x;t) just above and below the surface are coupled to

all other Kth modes by virtue of their interaction with the directionally

anisotropic surface. Hence, to proceed, we must now reinstate the presence of

the p and t indexes in the notation. Since we must consider all the amplitude

nodes simultaneously, we shall form a vector from them, as shown below.

Now recall that the number q of components of the lxq vector ~p(y;t)

depends on p and t (cf. (5.10)-(5.15»: q is either m-1 or m, as the case may

be. For the present boundary condition calculations we can treat all these

special cases in a uniform manner by defining an augmented amplitude vector

~p(y;t) of m components for each t = O, ••• ,n, regardless of whether p is 1 or

2:

(l2.1)

p = 1,2; t = O, ••• ,n

The mth components of these augmented amplitude vectors are either zero or

N±(y;m,o), in accordance with (5.6) and (5.7).

We next collect these n+1 augmented m-component vectors into one grand

m(n+1) component vector for each flow:
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p = 1,2.

The mxm matrices !p(a,x;klt), are now gathered up into one grand

m(n+1) x m(n+1) matrix of the form t (a,x), where we write-p

(12.2)

t (a,x;O\O) t (a,x;Oln)
-p -p

t (a,x) - (12.3)
-p

t (a,x;nIO) t (a,x;nln)-p -p

where p = 1 or 2. The remaining three m(n+1) x m(n+1) surface transfer

matrices are constructed similarly. With these constructions (5.18) and

(5.19) become
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13. BOTTOM BOUNDARY CONDITION; AUGMENTED MATRIX FORM
. +

Using the augmented m-component amplitude vectors ~p(Y;l) defined in

(12.1), we can reformulate bottom boundary condition (5.22) in the form

(13.1 )

p = 1,2

where ~±p(z) is now 1 x m(n+1) and r (z,b) is a m(n+1) x m(n+1) block diagonal-p

matrix of the form

r (z,b) =
-p

for p = 1,2.
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14. IMBED RULES

The imbed rules give the operators that yield the amplitudes at some

internal level y of a layer X[x,z] knowing the ~ and! matrices for the two

sublayers X[x,y] and X[y,z] above and below the level y, x ~ y ~ z (cf. H.O.,

Vol. II, p. 297). In the present application of the imbed rule we are

interested in finding the amplitudes ~±(x) just below the air-water surface 1n

X[a,b], a ~ x ~ y ~ z ~ b, where X[a,x] is the upper surface boundary, X[x,y]

is the water body, and X[z,b] is the lower boundary (a matte surface or a half

space). Given the incident amplitude ~;(a) = [~;(a;O), ••• ,~;(a;n)], the
+ + +

required amplitudes A-(x) = [A-(x;O), ••• ,A-(x;n)] are given by

A-(x) = A-(a) T (a,x,b) 1 x m(n+1) (14.1)
-p -p -p

A+(x) =A-(x) R (x,b) 1 x m(n+1) (14.2)
-p -p -p

= A-(a) R (a,x,b)-p p

where the complete transmittance and complete reflectance operators are given

by

T (a,x,b) = T (a,x) [I - R (x,b) R (x,a)]-l
-p -p - -p -p

R (a,x,b) = T (a,x,b) R (x,b)-p -p -p

(14.3)

(14.4)

These follow from the boundary condition (12.5) and the global interaction

principles of §10 written for X[a,b] = X[a,x] U X[x,b]. In particular Tp(a,x)

takes the form !p(a,x), and ~p(x,a) takes the form !p(x,a), both of which are

the m(n+1) x m(n+1) matrices defined in §13, above. The matrix ~p(x,b) is

discussed in §15., below. Observe that by the isotropy of X[x,z] and X[z,b],
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(14.2) may be uncoupled and written as n+l separate matrix equations for lxq

vectors and qxq matrices, q = m-l or m.
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15. UNION RULES

The union rules give the Rand T matrices of the union X(x,b) of two

layers X(x,z) and X(z,b) (cf. H.O., Vol. IV, p. 30), knowing the! and!

matrices of the two layers. In the present case X(x,z) is the water body and

X(z,b) is its lower boundary. The required rules follow at once from bottom

boundary condition (13.1) and the global interaction principles of §10 written

for X[x,b] = X[x,z] U X[z,b]. They are

R (x,b) = R (x,z) + R (x,z,b) T (z,x)
-p -p -p -p

R (x,z,b) = T (x,z) [I - R (z,b) R (z,x)]-l R (z,b)
-p -p -p -p -p

(15.1)

(15.2)

In particular !p(z,b) takes the form of the m(n+l) x m(n+l) augmented block

diagonal matrix !p(z,b) defined in (13.2), while the four matrices !p(x,z),

!p(z,x) and !p(z,x), !p(x,z) are m(n+l) x m(n+l) block diagonal matrices

(augmented from (m-l) x (m-l) form by adding zeros in the mth row and mth

columns, if necessary) made up of the t-mode matrices associated with the

water body. For example we have

R (x,z;O) 0-p -m

R (x,z) = (15.3 )
-p

0 R (x,z;n)
-m -p

The mxm matrix !p(x,z;t), t = O, ••• ,n, is given by (10.9), and, as noted, 1S

augmented to mxm, if necessary, for use in (15.3) with the augmented lxm

amplitude vectors in (12.1). The remaining three augmented matrices of the

water body are assembled into block diagonal form similarly.
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Another application of the unlon rule, this time to the union of X[a,x]

(the upper surface) and X[x,b] (the water body plus the lower boundary) yields

the matrix needed to find the upward radiance amplitudes ~;(a) emerging from

the air-water surface of the hydrosol. The required rules follow from

boundary conditions (12.4) and (12.5) and the global interaction principles of

§lO written for X[a,b] = X[a,x] U X[x,b]. The resultant union rules are

R (a,b) = R (a,x) + R (a,x,b) T (x,a)
-p -p -p -p

R (a,x,b) = T (a,x) [I - R (x,b) R (x,a)]-l R (x,b)
-p -p - -p -p -p

(15.4 )

(15.5)

Here !p(a,x), !p(x,a) and !p(x,a), !p(a,x) are the four m(n+l) x m(n+l)

transfer matrices of the upper surface occurring in (12.4) and (12.5), while

!p(x,b) is the matrix found in (15.1).

The required upward emergent radiance amplitude A+(a) leaving X[a,b] are-p

given by
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16. SOLUTION FOR A FINITELY DEEP MEDIUM

Having determined ~~(x) via (14.1) and (14.2), we may now return to

+(9.23) and find numerical values of A-(y;u) (with p and ~ understood) at all

depths y in the homogeneous water body part X[x,z] of the complete medium

X[a,b] = X[a,x] U X[x,z] U X[z,b]. Indeed, we may now explicitly evaluate the

initial amplitudes a}(x) in terms of the two basic qxq reflectance matrices

~(x,b) and ~~ of the medium X[a,b]. First observe that from (11.4) we have

J = l, •.• ,q (16.1)

This, with the mode-uncoupled form of (14.2), allows us to rewrite (9.19) as

+ + +a.(x) = _A (x) e. + A (x) e.
J -J -J

+= A (x) [_R(x,b) - R ]e.
~ -J

Moreover, (9.20) becomes

+ +
= -A (x) _R(x,b) R e. + A (x) e.

~ -J J

(16.2 )

+= A (x) [_I - _R(x,b) R ]e. (16.3)
~ -J

where r and ~ are understood in (16.2) and (16.3). Hence if the optical

properties of the medium are known, ~-(x) (: ~~(x) obtained via (14.1» will

be the only additional piece of information needed for a full solution.
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17. SOLUTION FOR AN INFINITELY DEEP MEDIUM

On letting z+~ in (16.2) and (16.3) (so that also b+~) we can evaluate

+the amplitude coefficients a1(x) in (9.23) for the case of an infinitely deep

homogeneous medium X[x,~], a ~ x < z ~ b =~. Noting that z appears

implicitly in (16.2) and (16.3) via !(x,b) (cf. (15.1» and recalling (11.1),

we find, for the limiting case z+~, that

+a. (x) = 0 j = 1, ••• ,q
J

and

a:(x) = A (x) (I - R2] + j 1, ••• ,qe. =
J - -a:I -J

(17.1)

(17.2)

Thus (9.23) reduces in this case to the amplitudes with purely decaying modes:

q

A:!:(y;u) = L
j=l

(17.3)

where p and l are understood.
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IS. THE ASYMPTOTIC RADIANCE DISTRIBUTION

When y 1n (17.3) becomes large, the associated directional distribution

of the zero mode cosine radiance amplitudes takes a well-defined form, that of

the so-called asymptotic radiance distribution. The basis for this is the

following. Recall that we have arranged the distinct, positive eigenvalues of

each mode 1 in ascending order: 0 < Kl(1) < K2(1) < ••• < Kq(1).

Numerical experiments with realistic models (cf. §SD) invariably yield

the inequalities:

Kl(O) < Kl(1) for all 1=1, ••• ,n. OS .1)

Physically, this is interpreted as showing that locally high curvature and

asymmetry of the radiance distribution (thought of as a surface in three-

dimensional space) tends to be smoothed and reduced as depth y increases. An

intuitive theoretical proof of (lS.l) can be given along the lines developed

in Preisendorfer (1959). Now let us multiply each side of (17.3) for the case

p = 1, 1 = 0, by eK1(O)(y-x) and then take the limit:

OS.2 )

u = 1, ••• ,m

We call the set of numbers {A±(m;l), ••• ,A±(m;m)} or any scalar multiple

of this set the asymptotic radiance distribution (of order m). +Thus A-(m;u)

is defined via the zero mode (1=0) cosine radiance amplitude (p = 1) of the

radiance field. All other modes of the physical radiance distribution decay

at a greater depth rate than Kl(O), by (lB.1), and are lost on the way to

y = m. Hence the asymptotic radiance distribution is symmetrical about the
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vertical direction. The u-dependence of fT(u;O) defines the zenith to nadir

shape of the asymptotic radiance distribution. As we have seen, fT(u;O) is

determined solely by the mxm system matrix !(O) (for the zeroth azimuthal

mode), which in turn is defined by the shape of the volume scattering

function. Observe that all directional information about the initial radiance

distribution via !T(x;O) has been lost in the formation of a7(x;O). Hence the

asymptotic radiance distribution is an inherent optical property of an

infinitely deep homogeneous medium.
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19. TWO-FLOW IRRADIANCE OBSERVABLES ASSOCIATED WITH THE ASYMPTOTIC RADIANCE
DISTRIBUTION

The three main two-flow irradiance observables, namely the K(y,±),

R(y,±), and D(y,±) quantities (H.O., Vol. V, p. 115-118), have specific values

in an asymptotic radiance field. Observe that these quantities will be

independent of y, and henceforth we shall denote their constant values,

respectively, by "K±", "R±", and "D±".

First, at great depths K+ = K__ k~ and the common value k~ 1S related to

= k fa
~

(19.1)

Hence, knowing Kl(O) and a, we can deduce the asymptotic decay value (cf.

H.O., Vol. V, pp. 244-248):

(m-I) I (19.2)

common to all radiometric magnitudes (scalar irradiance, radiance, etc.).

Further, we find

m + m
L A (~;u) III Ifill L f~(u;o)lllul

u=l u u=lR - R-l = R = = (19.3)
~ + m m

L A-(~;u)lll Ifill L +
f1(u;O)lll I

u=l u
u=l u

Finally

:+=
f1(u;O)

m

L
u=l

D± = -m-------

L
u=l
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From these one finds the volume absorption coefficient (cf. H.O., Vol. V,

p. 247):

k (l-R )
m m

a = 0 - R 0
- m +

which can serve as a check on the computations.

(19.5)

Recall that the whole problem

began with a and a given, so that a = a-s, derived from the initially given

data, can be checked against a in (19.5), the end of a long chain of

arithmetic operations.

Interestingly, from (19.1)-(19.4) we see that K(y,±), R(y,±), and D(y,±),

which are apparent optical properties for small depths y, attain the status of

inherent optical properties in the limit of arbitrarily great depth.

68



§20

20. INVERSE SOLUTION

In the present homogeneous setting we can determine the local reflectance

and transmittance matrices eand t for each azimuthal mode from observations

of the radiance distribution at various depths. We shall now give some

attention to this matter.

First of all observe that, by knowing e and i from the inverse solution,

we can in effect estimate the quad-averaged volume scattering function values

sp(u',v'lu,v) for all distinct quad pairs Qu'v' and Quv in an adopted

decomposition of the unit sphere. Also estimable is a' = a - sp(u,vlu,v), the

observable value of the volume attenuation coefficient a (for a discussion of

this interesting phenomenon of the inaccessibility of a and hence p(a,vlu,v),

see H.O., Vol. VI, p. 296). The smaller the solid angle subtense of Q" theuv'

closer will a' be to the "true" value a. Hence a finite sequence of ever

finer Quv partitions will allow a to be estimated as a limited value. Since

the p(u',v' lu,v) must add up to 1 as we sum over all Quv for any fixed Qu'v"

we can then estimate also sand p(u,vlu,v) from the inversion results £ and

t. This then amounts to a practical recovery of a and a to within the degree

of accuracy governed by the fineness of the quad decomposition of the unit

sphere.

To start the inverse procedure, we obtain the radiance amplitude vectors

~(y) at various depths (to be specified below) from the given, observed

radiance distributions at those depths.

The following steps in the inverse procedure are based on some

observations in Preisendorfer (1968) which may be readily applied now that we

have the specific solution for ~(y) available in the eigenmatrix form:
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where

(20.1)

(20.2)

Since ~(y) = [A+(y), ~-(y)] and ~±(y) are q-dimensiona1 vectors, to

invert (20.1) we need 2q linearly independent observed amplitude vectors

~(Yj)' j = 1, •• ,2q of the light field. These observations are spaced at

depths some constant interval ~Y = Yj+1-Yj apart. Then by the mapping

property (6.10), for each j = 1, ••• ,q, we have

_ A(y.) M(t.y) •
- J -

That the set of vectors ~(Yj)' j = 1, ••• ,2q is in principle linearly

independent follows from the fact that the set of exponential functions

(20.3)

exp[±Kj(y-X)], j = 1, ••• ,q, is linearly independent (recall the discussion

leading to (7.11».

Next, write

A :: [!(~1) ]
_1 •

A(Y2 )- q

(2q )( 2q) (20.4)

From what we have just observed ~1 is an invertible 2q )( 2q matrix.

Furthermore write

(2q )( 2q) (20.S)

Then the set of relations (20.3) can be written
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(20.6)

whence

(20.7)

We are next led to find the eigenvector matrix E and eigenvalue matrix

K = diag[Kl, ••• ,Kq , -Kl, ••• ,-Kq], as follows.

Evidently by inspection of (20.2), the eigenvectors of ~(y-x) are already

+ += [!T""'!q]' the eigenvectors of !. Next, suppose we order and then

label the 2q eigenvalues of ~(Ay) as follows:·

< ••• < (20.8)

By (20.2) we expect that

+
y'7 = exp[±K.Ay]

J J

Therefore, we write

J = l, ••• ,q (20.9)

+
±(Ay)-l lLn y'7

J
J = l, ••• ,q (20.10)

Of course when working with actual data we will find that we don't exactly

+ -have YjYj = 1, with the result that we will not exactly have + -K· = -K·.
J J

We

will then adjust the K] found above so that we do obtain Kj with this symmetry

property. We accordingly set
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j = 1, ••• ,q (20.11)

The ~ are re-computed for these symmetrized K·.
J

Once 8 and the Kj'

j = 1, ••• ,q have been so found, we can then go on to compute

K = 8 K 8- 1 (2q x 2q) (20.12)

which yields the two estimated qxq matrices ~, i, discussed above, for each

mode ~ = O, ••• ,n; whence a and a.

As a check on the preceding procedure we can construct the amplitude

vectors ~(Yj)' j = 1, ••• ,2q from the estimated! in (20.12) and compare with

the observed values. Note that the eigenstructure K} in (20.10) and the ~ of

!(Ay) in (20.7) (before symmetrizing in (20.11» will reproduce the observed

radiance amplitudes ~(Yj) in (20.5) exactly. Once the symmetrized Kj and

their associated e± matrices have been found, we will have in effect estimated

the system matrix! of the homogeneous medium, i.e., we will know the inherent

optical properties a and a of the medium. Let K be the estimate. When new

incident light fields ~'(x) come along, the associated new ~(y), say ~'(y), at

any depth y (and hence N(y;u,v) at the depth y), can be obtained from the

mapping property ~'(y) = A'(x) exp[!(y-x)].
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APPENDIX A

EIGENHATRIX THEORY OF THE TWO-FLOW IRRADIANCE HODEL

1. Introduction

The eigenmatrix theory of §7 has a simpler counterpart in the form of the

eigenanalysis of the two-flow irradiance model. We shall develop this simpler

version here, following the main developments of §7 along a parallel track, as

far as possible. It will be an instructive exercise on two counts: First,

the key qxq matrices ~ and ~ will reduce to numbers (because now q = 1) and

so we will be able to see their physical constitution directly; all formulas

can, if desired, be numerically evaluated by hand, and simple algebraic

operations reveal all the inner workings of the eigenmatrix theory. Hence the

present discussion can serve as an informative prerequisite to the main study

of §7 •. Second, the present model, despite its simplicity, is actually a bit

more complex in the sense that the local optical properties '± and p±, which

are the present counterparts to the qxq matrices ±' R, are in fact

anisotropic; that is, unlike the radiance case of §7, we must distinguish

between absorption and backscattering activities on the upward and downward

flows on the local level.

2. The Two-Flow Irradiance Equations

The form of the irradiance model we shall use 1S that developed in

Preisendorfer and Hobley (1984). At any geometric depth y, x ~ y ~ z,

where , = -[a + b ]± ±-±
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and

We shall use the p± and b± notation interchangeably, according to the

momentary interpretation desired: local reflectance or local backscatter.

This model has four depth-independent parameters: the two distribution

factors D±, which describe the mean path length of ascending (+) and

descending (-) photons through a layer of unit thickness; and two inherent

optical properties, the volume absorption coefficient a and the mean

backscatter coefficient b. We shall work with realistic media (cf. §8D),

i.e., those for which a > 0, b > 0 and 0+ > 0_ > O.

The backscatter coefficient b is an inherent property in the following

sense. By definition, the general depth-dependent backscatter function b(y,±)

is

b(y,±) =H-l(y,±) f dQ(t) f N(y;t') a(y;t';t) dQ(~')

-+

(A2.2)

In the two-flow irradiance model we may adopt an average radiance over =± when

evaluating (A2.2). This radiance is a form of quad-averaged radiance, with

the quad replaced by =+ or =_. Thus in (A2.2) we may adopt radiances over =±

in the form

{ h(y,+)/h if t 1S in -+

N{y,t) = (A2.3)

h(y,-)/21r if t is 1n -
Under this hypothesis, (A2.2) reduces to
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b(y,±) = D(y,±) bey)

where we have written

· A2

(A2.4)

bey) 1 J dQ(t) J o(y;l; , ; t) dO(t ' ) (A2.S )- 21f
-- ::+

1 J dO(t) J o(y;l;';I;) dO(t')or 21f
::+ --

The isotropy of 0 at depth y implies that o(y;t';t) = o(y;t;t') for all t' and

t. Hence bey) does not depend on the direction of the incident flow of

photons across the plane at level y, and so the alternate form of bey) in

(A2.S) also characterizes bey). In either of the two formulas, observe that

we are finding a mean or average magnitude of the backward scatter of photons

across the horizontal plane at level y, x S y S z. Since bey) in this sense

is independent of the direction of flow of the photons, it is an inherent

optical property under the hypothesis (A2.3). Note that when scattering is

spherically symmetric, i.e., when o(y;t';t) = s(y)/41f, then bey) = s(y)/2,

i.e., bey) is half the volume total scattering function s(y), as expected.

3. The Fundamental solution of the Two-Flow Model

We may write (A2.l) in matrix form as

d
dy ~(y) = ~(y) K

where we have written
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~(y) _ [H(y,+), H(y,-)]

K - [-'+ p+]
-p- '-

A3

(1)(2)

(2)(2)

(A3.2)

(A3.3)

In this way we see (A3.l) as the irradiance counterpart to (6.5). Notice that

we now have, dependent on the upward (+) or downward (-) flow. Hence we do

not have the local isotropy that is present in (6.4).

Following the development in §6, we can write the fundamental solution of

(A3.l) as

(A3.4)

where K is now the relatively simple 2)(2 matrix in (A3.3). It has all the

properties of the 2q )( 2q matrix ~(x,y) of §6. In particular, the mapping

property holds:

~(y) = H(x) ~(x,y) (A3.S)

We are in effect working with ~(x,y) of §6 for the case q = 1. Keep in mind,

however, that the parallelism between the multimode theory and the present

irradiance theory is not exact, since (A2.l) exhibits anisotropy via the

property D+ > D_ > o.
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4. The Eigentheory of TWo-Flow Irradiance Fields

+The purely exponential basis functions B}(y) of (7.1) have their present

counterparts in two scalar-valued functions B(y,±), since we are in effect

working in the q = 1 case. Thus we postulate for the irradiance model two

exponentially varying functions B(y,±) such that

(A4.l)

For reasons which will become clear shortly, B(y,±) are the eigen-irradiances

of the medium. Linear combinations of these are to represent the observable

irradiance fields

H(y,+) = B(y,+) f++ + B(y,-) f_+

H(y,-) = B(y,+) f+_ + B(y,-) f

(A4.2)

where f±± and f+± are dimensionless constants. These equations may be placed

in matrix form:

where we have written

!(y) = [B(y,+), B(y,-)]
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Conversely, we can represent the eigen-irradiances 8(y,~) as linear

combinations of the observable irradiances 8(y,±):

8(y,+) = 8(y,+) e++ + 8(y,-) e_+

8(y,-) = 8(y,+) e+_ + 8(y,-) e

(A4.6)

where eft' e±~ are dimensionless constants. These equations may be written

more compactly as

!(y) = !!(y) E

where we have written

Clearly

F = e- 1

analogous to (7.24).

(A4.7)

(A4.8)

(A4.9)

Corresponding to the law of change of !!(y) in (A3.1), that for ~(y) is,

by (A4.l),

where
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k = diag[k ,k ]
+ -

A4

(2x2)

Observe that k± have units m- 1 because y is now geometric depth, rather than

optical depth as used in the body of this report. Geometric depth is adopted

here as the more natural depth, since the irradiance model does not have the

volume attenuation coefficient a to readily convert geometric depth to optical

depth. (If it is still desired to work with y as optical depth in (A2.I) and

(A4.l0), then a±, b± and k± must be divided by a.)

Following the procedure leading to (7.27) we now find, via (A3.I) and

(A4.I0), in the present case that

K E =E k , (A4.II)

which is the basic eigenstructure equation for the irradiance model.

Equation (A4.II) contains two eigenvector/eigenvalue statements. The

first may be written

In component form this becomes

(A4.I3)

-p e +. e_+ = k e- ++ + -+

The two unknowns e++ and e_+ are determined by (A4.I3) up to a common

factor. The first equation of (A4.I3) suggests that we can set
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(A4.l4)

where Cl = 1 m. Thus e++ has the magnitude of p+ and is dimensionless.* The

second of (A4.l3), with these values of e++ and e_+ becomes

-(~ + k ) (,_ - k ) + P P = 0+ + + + -

We shall return to this equation in a moment.

The second eigenvector/eigenvalue equation in (A4.ll) is

In component form this is

(A4.lS)

(A4.l6)

= k e
- +-

= k e

(A4.17)

The second of (A4.l7) suggests that, on uSlng the same Cl as in (A4.l4),

we set

e (A4.l8)

The first of (A4.l7) yields (A4.lS), but now with k_ instead of k+. Hence the

* In all subsequent uses of (A4.l4) and (A4.l8), Cl will not explicitly
appear, since its purpose is simply to make the e++, e++ dimensionless. If
we had adopted optical depth y in (A2.l), the ,+ and p~ would be replaced
by the dimensionless quantities T+/a, p+/a and Cl woula not be needed at
this stage. - -
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eigenvalues k± are go~erned by the quadratic equation

or

k 2 + (T - T_)k + (~~ - T T ) = 0+ + - +-

From this we see that the roots k± of (A4.l9) satisfy the relations

(A4.19)

(A4.20)

- T+

= [D - D ][a + b] > 0
+

k+k_ = ~+~_ - T+T_

= -D D a[a + 2b] < 0
+ -

(A4.21)

(A4.22)

The roots themselves are given by

1

k± = ~{h - T ) ± [(T - T ) 2 - 4(~ ~ - T+T ) ] '1} (A4.23)- + + + -

= ~{h - T ) ± [h + T )2 - 4~+~_]~}- + + -

For realistic media (a > 0; see §8D) it follows from (A4.22) that k+ and

k_ are nonzero and of opposite signs. From this we conclude that
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Under most natural lighting conditions (light from a sunny or overcast sky

entering a lake or sea), D+ > D_, and so from (A4.21) we have k+ + k_ > 0; in

other words Ik_1 < k+. Therefore, according to this model, in natural waters

downwelling eigen-irradiance usually decays slower than upwelling eigen-

irradiance.

Moreover, if the medium exhibits back scattering, i.e., b > 0, then from

(A4.23) and recalling that '± are negative, we observe that

6 _ '+ + k+ =, - k

= ~{(, +,) + [(, +, )2 - 4p p ]~} < 0
+ + + -

(A4.2S)

These inequalities yield the following physical interpretations about decay

rates of the photon streams:

-k < a + b • (A4.26)

From (A4.19) we obtain what will turn out to be key ratios:

- k±=---- (A4.27)

and, after some rearranging, we find from this also that

The combination P+P_ - 6 2 in (A4.28) is never zero in realistic

backscattering media; for we have by (A4.24) and (A4.2S),
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(A4.29)

Unlike the isotropic setting of §7, the eigenvalues k± of (A4.ll) are not

of equal magnitude; although, by (A4.22), they are of opposite sign. By

(A4.22) they will be of equal magnitude and we will have isotropy if T+ = T_,

i.e., if in (A2.1) we have 0+ = 0_. This condition unfortunately is never

satisfied by irradiance fields in realistic media; and so we should retain

distinct values of 0+ and 0_ in the present irradiance model. Occasionally,

however, (cf. Preisendorfer and Mobley, 1984, or H.O., Vol. V, p. 64) it is of

interest to consider the one-D case to explore potential symmetries, and

develop very simple light field models.

We may summarize the preceding findings about the eigenmatrix E in the

form

(A4.30)

The inverse F of E may therefore be represented as

(A4.3l)

5. Eigenmatrix Representation of the TWo-Flow Hodel Fundamental Solution

We may now return to (A3.4) and write it in a form that is parallel to

(7.29):
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A5

(2x2) (A5.1)

where E and F are given in (A4.30) and (A4.3l), and ~ = diag[k+,k_l, with k±

as defined in (A4.23). In more detail, we have from (A5.I) the following

scalar counterparts to (9.3)-(9.6):

M++(X,y) =: e++
ek+(y-x) f + k (y-x) f (A5.2)e e-++ +- -+

M_+(X,y) = e ek+(y-x) f + e k (y-x) f (A5.3)e --+ ++ -+

M+_(X,y) =: e++
ek+(y-x) f + k (y-x) f (A5.4)e e-+- +-

M__ (x,y) = e_+ ek+(y-x) f + e ek_(y-x) f (A5.5)+-

We will occasionally use the e++, ••• ,f__ notation instead of the p±,o notation

since the former notation acts as a useful mnemonic. However, for reference,

we also can write (A5.2)-(A5.5) in the form

M++(X,y) = [P+P-
ek+(y-x) - 0 2 ek_(y-x) l h (A5.6)

M_+(x,y) = p_o[ek+(y-x) _ ek_(y-x)] It, (A5.7)

M+_(X,y) = _p o[ek+(y-x) _ ek_(y-x ) ]h (A5.8)+

M__ (x,y) = -[0 2 ek+(y-x) _
P+P-

ek_(y-x)] It, (A5.9)

It is at once clear that

M++(X,x) = M__ (x,x) = 1

M (x, x) = M (x,x) = 0
+- -+

------------- --------
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Moreover, M+_(x,y) and M_+(x,y) differ multiplicatively only by a constant

factor -p+/p_ (= -b+/b_). Observe that the interchange rule (9.9)-(9.12)

holds here also.

When k±(y-x) 1S small, then to first order in k±(y-x) the quantities 1n

(AS.6)-(A5.9) may be reduced, with the help of (A4.28) and (A4.29), to

M++(X,y) = 1 - T (y-x) (A5.11)+

M_+(X,y) = -p_(y-x) (A5.l2)

M+_(x,y) = p (y-x) (A5.13)+

M__ (x,y) = 1 + T__ (Y-X) (A5.14)

These relations may be compared to (9.3a)-(9.6a).

6. Reflectances and Transmittances for a Homogeneous Layer

The formulas (10.3)-(10.6) that convert the fundamental operators

~++, ••• ,~__ to reflectances and transmittances !(y,~), ••• ,!(y,x) of a water

layer X[x,y] can be applied to the present scalar case also. Thus using

(A5.6)-(A5.9) in those earlier formulas, we find, for x ~ y ~ z,

R(y,x) = 6[ k+(y-x) k (y-x)][ ek+(y-x) _ 62 ek_(y-X)]-l (A6.l)-p+ e - e - p p+ -

T(x,y) = 6e (k++k_)(y-x)
[P+P-

ek+(y-x) _ 62 ek_(y-X)]-l (A6.2)

R(x,y) = _p 6[ek+(y-x) _ k (y-x)][ ek+(y-x) _ 62 ek_(y-X)]-l (A6.3)e - P+P
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From these relations we can read off various important physical properties of

the optical medium. For example,

R(x,y) = (p /p ) R(y,x)
- +

and

[= (0 /0 ) R(y,x)]
- +

(A6.5)

(A6.6)

The parenthetical statement holds if we adopt the assumption b~ = O~b, as in

§A2 above. Thus we see that upward and downward slab transfer properties are

equal if and only if we have lighting isotropy (0+ = 0_), as observed

earlier. When k~(y-x) is small, (A6.1)-(A6.4) reduce, to first order 1n

k~( y-x), to

R(y,x) = p+(y-x) (A6.7)

T(x,y) = 1 + ,_(y-x) (A6.8)

R(x,y) = p_(y-x) (A6.9)

T(y,x) = 1 + ,+(y-x) (A6.10)

When k±(y-x) is large, then

T(x,y) k (y-x)
e - (A6.11 )

T(y,x) "" -k (y-x). e + (A6.12)

In the limit of infinitely deep media, we find, from (A6.3), with the help of

(A4.27), (A4.30), and (A4.31) that
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R_(~) _ lim R(x,y) = -a/ p+ = -(T++k+)/p+ = (a++b+ - k+)/b+
y+~

= -p I(T -k ) = b I(a +b +k )
- - + - - - +

• -e e -1 z f- 1 f
-+ ++ -+

(A6.13)

(A6.14)

(A6.1S)

The last equality, (A6.1S) (which stems from (A4.7», shows the formal

connection with the radiance case, namely (11.3). The alternate formulas

(involving a±, b±, k±) are model versions of exact relations; see H.O.,

Vol. V, p. 113. Furthermore, from (A6.1), again with the help of (A4.26),

(A4.29), and (A4.30):

R+(~) _ lim R(y,x) = -a/p_ • -(T_+k_)/p_ = (a_+b_ - k_)/b_
y+~

= -p I(T -k ) = b I(a +b +k )+ + - + + + -

= -e e- 1 = f- 1 f+- -- ++ +-

(A6.16)

(A6.17)

(A6.18)

The last equality, (A6.18), as (A6.1S), shows the formal connection with the

isotropic radiance case. Observe how (11.12) and (11.14) reduce to the

present formulas if one momentarily allows isotropy in the preceding equations

and relaxes the non-commutativity property of matrix multiplication in

section 11 (think of the matrices as 1x1).

7. Solution for a Finitely Deep Medium

We now may assemble the pieces of the solution of (A2.1) for a light

field in a finitely deep medium such as that shown in Fig. 1. We assume given

the set of four irradiance reflectances and transmittances t(a,x), t(x,a),
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r(a,x), r(x,a) of the wind-blown surface X[a,x], as generated in Preisendorfer

and Hobley (1985, 1986). The optical properties of the homogeneous water body

X[x,z] are specified by the D±, a, and b parameters in (Al.l). Finally, the

reflectance R(z,b) of the bottom X[z,b] is assumed specified. Downward

irradiance H(a,-) is incident on the upper surface X[a,x] and there are no

other sources of flux on or in X[a,b] = X[a,x] U X[x,z] U X[z,b]. It is

required to find H(y,±) for all depths y, x ~ y ~ z, and also the emergent

irradiance H(a,+).

We start with the mapping (A3.5). Using (A5.2)-(A5.5) we find, on

rearranging the terms:

(A7.1)

where

+a (x) _ H(x,+) e++ + H(x,-) e_+

(A7.2)

H(x,+) e + H(x,-) e
+-

Now consider the composite medium X[x,b] = X[x,z] U X[z,b] consisting of the

water body X[x,z] and the reflecting lower boundary X[z,b]. Let us assign a

reflectance R(x,b) to X[x,b], which we will later show how to evaluate. For

the present, the global interaction principle applied to X[x,bl yields the

relation

H(x,+) = H(x,-) R(x,b)
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The amplitudes a±(x) in (A7.1) and (A7.2) then reduce, with the help of

(A6.15) and (A6.18), to

(A7.4)

(A7.5)

We therefore may evaluate H(y,±) at every level y in X[x,z], provided we know

H(x,-) and R(x,b) (cf. (16.2) and (16.3».

Now, by the scalar version of the union rule in §15, for X[x,z] and

X[z,b] we have

R(x,b) = R(x,z) + R(x,z,b) T(z,x)

where

R(x,z,b) = T(x,z) [1 - R(z,b) R(z,x)]-l R(z,b)

(A7.6)

(A7.7)

The quartet R(z,x), T(x,z), R(x,z), T(z,x) 1S found V1a (A6.1)-(A6.4), while

R(z,b) is given.

To find H(x,-), we use the scalar version of the imbed rule in §14 to

first of all determine

T(a,x,b) = t(a,x)[l - R(x,b) r(x,a)]-l

where t(a,x) and r(x,a) are the air-water surface's downward irradiance

transmittance and upward irradiance reflectance, respectively. Then

H(x,-) = H(a,-) T(a,x,b)
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The emergent flux H(a,+) at level a is given by the global interaction

principle applied to X[a,x]:

H(a,+) = H(a,-) r(a,x) + H(x,+) t(x,a) (A7.l0)

where H(x,+) is given by (A7.3), and r(a,x) and t(x,a) are the remaining two

irradiance transfer coefficients for the air-water surface. This completes

the solution.

8. solution for an Infinitely Deep Medium

In (A7.4) and (A7.S) set R(x,b) = R_(m) (which is the limit, as z+=, of

R(x,b) in (A7.6». Then for x S y < m, (A7.l) reduces to

H(y,±) = H(x,-)[l - R (m)R (m)] k (y-x)f (A8.l)e e-- + -- -±
or simply

H(y,-) = H(x,-)Aek-(y-x) (A8.2)

and

H(y,+) = H(y,-) R_(m) (A8.3)

where A is given in (A4.29) and R_(~) in (A6.13). H(x,-) is given in (A7.9)

with b = m, and H(a,+) is given by (A7.10). Thus we find

H(x,-) = H(a,-) t(a,x) [1 - R_(m) rtx,a)]-l

and
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H(a,+) = H(a,-) (r(a,x) + t(a,x) [1 - R_(m) r(x,a)]-l R_(m) t(x,a)} (A8.6)

= H(a,-) R(a,m)

Here R(a,m) is the limit, as b + m, of R(a,b) where by the union rule (15.1)

applied to the union X[a,b] of X[a,x] and X[x,b], we have

R(a,b) = r(a,x) + t(a,x) [1 - R(x,b) r(x,a)]-l R(x,b) t(x,a) (A8.7)
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